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Semiparametric Bayesian Techniques for
Problems in Circular Data

KAUSHIK GHOSH1, S. RAO JAMMALAMADAKA2 & RAM C. TIWARI3,
1Department of Statistics, George Washington University, USA; 2Department of
Statistics and Applied Probability, University of California, Santa Barbara, USA;
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 In this paper, we consider the problems of prediction and tests of hypotheses
for directional data in a semiparametric Bayesian set-up. Observations are assumed to be
independently drawn from the von Mises distribution and uncertainty in the location
parameter is modelled by a Dirichlet process. For the prediction problem, we present a
method to obtain the predictive density of a future observation, and, for the testing
problem, we present a method of computing the Bayes factor by obtaining the posterior
probabilities of the hypotheses under consideration. The semiparametric model is seen to
be flexible and robust against prior misspecifications. While analytical expressions are
intractable, the methods are easily implemented using the Gibbs sampler. We illustrate the
methods with data from two real-life examples.

1 Introduction

In many natural and physical sciences, the observed data are directions. Such is
the case when a meteorologist is recording hourly wind directions, a geologist is
studying the direction of sediment deposit from an ancient river or an environmental
scientist is studying the direction of pollutant flow from a smokestack. In addition
to physical directions, scientists are often interested in data that are periodic with
a known period. For example, the variable of interest may be the time of day when
an emergency room arrival occurs, or the time of day when a person has the lowest
melatonin in his/her body.

In the above examples, the data can be represented as points on the circumference
of a unit circle, with one complete cycle (ó24 hours when the variable of interest
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is time of day) equivalent to one rotation around the circle. Data represented as
points on a circle are sometimes collectively known as circular data. In this article,
we deal only with circular data but the methods that we present here can be easily
generalized to higher dimensions.

Circular observations can be represented as unit vectors (1, x) in the polar coordi-
nates, or, alternatively as x, where x (0Ox\2n) is the angle of rotation from a
conveniently chosen zero direction (origin) and a sense of positive rotation. How-
ever, the choice of origin and sense of positive rotation are arbitrary, making possible
multiple representations of the same observation. As an example, mathematicians
think of ‘East’ as 0 and anticlockwise rotation as positive, while geologists follow the
convention of ‘North’ as 0 and clockwise rotation as positive. Thus, an observation
of n on the mathematicians’ scale would be 3n /2 on the geologists’ scale.

Another problem posed by circular data is the periodicity, and, as a result, large
numerical differences need not signify large physical differences. For example, two
emergency room arrivals at 23:45 and 00:30 are closer to each other than, say, at
1:00 and 3:00, even though the numerical difference is smaller in the second case.

All these problems render usual statistical techniques useless for circular data,
since they do not take into account the latter’s special properties. If x1, . . . , xn are
n observed directions, the circular analogue of mean and variance of the observa-
tions are given by x̄0 and 1ñ(R /n) respectively, where

R cos x̄0ó;
n

ió1
cos xi

R sin x̄0ó;
n

ió1
sin xi � (1)

and x̄0 and R are the direction and length respectively of the resultant of the unit
vectors formed by the n observed directions. Similar modifications are necessary
for almost every ‘linear’ statistical technique we want to adapt to the circular set-
up. For more on the subject of directional data, the reader is referred to Mardia &
Jupp (2000), Fisher (1995) and Jammalamadaka & SenGupta (2001).

Often, in the circular set-up, one might be interested in predicting the future
behaviour of a system based on past data. For example, a meteorologist who has
data on average wind directions from the past month, wants to predict tomorrow’s
(or next week’s) average wind direction. Another example is where hospital
administrators have data on the arrival patterns at an emergency room and want
to use them to predict future arrival patterns. This is particularly helpful in planning
staff and equipment schedules, so that ‘rush hours’ are well staffed. A third example
is in the study of various circadian rhythms in the human body and one might be
interested, for example, in the time of peak blood glucose level (to devise an
optimal treatment schedule by timing the insulin injection). In the first part of this
article, we present a Bayesian approach to finding the predictive density of future
observations using a class of Dirichlet process priors (see Ferguson, 1973). This
approach allows for flexibility in the prior specification by quantifying belief in the
chosen prior.

A different kind of problem in circular data arises when one is interested in
testing for the equality of two (or more) preferred directions. For example,
physicians might be interested in determining if the average arrival times at an
intensive care unit (ICU) are the same for male and female patients. Another
example is where geologists are comparing the average direction of flow of an
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ancient river during different time periods by looking at the orientation of sediment-
ary deposits. This is the circular analogue of the usual two-sample problem in the
linear case. The frequentist approach is to assume a parametric set-up and derive
an optimal test. This, however, requires specification of the probability of Type I
error, which is somewhat arbitrary. Moreover, the specified parametric model may
not be entirely accurate and the frequentist method does not allow us to incorporate
any fuzziness about the model. The alternative is to work in the parametric Bayesian
set-up, but this also requires an exact knowledge about the prior distribution of
the parameters.

In the second part of this article, we look at this problem from the semi-
parametric Bayesian viewpoint, where the parameters are allowed to have a
Dirichlet process prior. Like the prediction problem, this allows us flexibility in our
model choice and gives a more robust analysis than the parametric Bayesian set-
up. We present a technique that uses the data to update prior probabilities to get
the posterior probabilities of the null and alternative hypotheses. Using these, we
compute the Bayes factor and determine the hypothesis that is supported by the
observed data.

A natural model for circular data is the von Mises distribution with the pdf of
the observed angle x given by

f(x D k, i)ó 1
2nI0(i)

exp[i cos(xñk)], 0Ox\2n, 0Ok\2n, i[0

This is symmetric, unimodal and is a circular analogue of the normal distribution
on the line—hence, is also known as the circular normal distribution. We will
denote this distribution by VM(k,i). The parameter k is a location parameter
denoting the mean direction, i measures the concentration around this mean
direction and I0(i) is the Bessel function of the first kind of order 0. ió0 means
that there is no preferred direction (k is undefined in this case) and that the
observations are uniformly distributed on the unit circle.

For purposes of this article, we will assume that the observed directions are
observations from von Mises distributions with unknown ks and is. Section 2
discusses the prediction problem in detail and illustrates the whole idea with an
example from ICU data. Section 3 discusses the problem of testing of equality of
two means, which is illustrated by an example on directions of palaeocurrents.
Finally, Section 4 discusses the relative merits and demerits of the proposed
procedures and compares them with the traditional methods. Possible future work
is also proposed.

2 Prediction problem

2.1 Introduction and notations

Let x1, . . . , xn be n circular observations with ki being the mean direction and ii

the concentration parameter respectively corresponding to xi. We assume that
xi D (ki,ii), ió1, . . . , n are independent random variables distributed as xi D (ki,ii)~
VM(ki,ii), ió1, . . . , n. We also assume that the mean directions k1, . . . ,kn are
independent and identically distributed (i.i.d.) with an unknown distribution G
and that the concentration parameters ii are i.i.d. from a completely known
distribution H and that the iis are independent of the kis. Being unsure about the
form of G, we model G non-parametrically. There is a prior guess G0 (which is
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completely known) of G available and the strength of our belief in this guess is
quantified by M([0), also known. G0 is also sometimes referred to as the ‘baseline
prior’ distribution of the kis. The above information regarding G is combined by
saying that G has a Dirichlet process prior (see Ferguson, 1973, p. 214) with
parameters M and G0—symbolically, G~D(M, G0).

If G~D(M, G0), we have the following: for any kP1 (integer) and B1, . . . , Bk a
partition of the sample space ), the random vector

(G(B1), . . . , G(Bk))~Dir(MG0(B1), . . . , MG0(Bk))

where Dir( · ) stands for the Dirichlet distribution (see Wilks, 1962, Section 7.7).
The Dirichlet process prior D(M, G0) thus gives us a probability measure on the
space of all distributions G that has a location parameter G0 and dispersion
inversely proportional to M. A high value of M implies a very strong prior belief
that G is actually G0.

Let

xnó(x1, . . . , xn)

�nó(k1, . . . , kn),

�nó(i1, . . . ,in)

and

� (i)
n ó(k1, . . . ,kiñ1,kiò1, . . . ,kn)

� (i)
n ó(i1, . . . ,iiñ1,iiò1, . . . ,in)

be the parameter vectors obtained by deleting the ith elements of �n and �n

respectively. We will use the notation [X DY ] to indicate the conditional distribution
of X given Y (here X, Y may be vectors) and dx( · ) to denote the degenerate
measure that puts a mass of 1 at x. Finally, where convenient, we will use the generic
notation dp( · ) to denote the joint (conditional or unconditional) distribution of
the parameters.

2.2 Theory

The likelihood function of (�n, �n) based on the observed data xn is given by

f(xn D�n, �n)ó<
n

ió1
f(xi D ki,ii)

From the Bayes theorem, the posterior of (�n, �n) given xn is

dp(�n, �n Dxn)ë f(xn D�n, �n) dp(�n, �n)

(2)

ó �<
n

ió1
f(xi D ki,ii)� dp(�n) dp(�n)

the last equality being due to the independence of �n and �n. Ferguson (1973)
showed that if G~D(M, G0) and k DG~G, then



Problems in circular data 149

G D k~D�Mò1,
MdG0òdk

Mò1 �
Using this argument sequentially, the joint distribution of �n is (see Blackwell &
MacQueen, 1973, Antoniak, 1974)

dp(�n)ë<
n

ió1

1
(Mò iñ1) �MdG0(ki)ò;

iñ1

jó1
dkj(dki)� (3)

From this, we can write the univariate conditional pdfs as

dp(ki D�(i)
n )ë M

Mònñ1
dG0(ki)ò

1
Mònñ1

;
n

jó1
jÖ i

dkj (dki)

(4)

ió1, . . . , n

Hence, if knò1 is a future value of the mean direction k, its distribution conditional
on the past ks is given by

dp(knò1 D�n)ë M
Mòn

dG0(knò1)ò 1
Mòn

;
n

jó1
dkj(dknò1) (5)

The prediction pdf of the unobserved future value xnò1 of x, given the observed xn, is

f(xnò1 Dxn)ó� f(xnò1 Dxn, �n, �n) dp(�n, �n Dxn) (6)

Since f(xnò1 D knò1, inò1, xn, �n, �n)ó f(xnò1 D knò1, inò1) and dp(knò1, inò1 Dxn, �n,
�n)ódp(knò1 �n)îdH(inò1), using equation (5), we have

f(xnò1 Dxn, �n, �n)

ó�� f(xnò1 D knò1,inò1, xn, �n, �n) dp(knò1,inò1 Dxn, �n, �n)

ó�� f(xnò1 D knò1,inò1) dp(knò1 D�n) dH(inò1)

ë�� exp [inò1 cos (xnò1ñknò1)] (7)

î� M
Mòn

dG0(knò1) ò 1
Mòn

;
n

jó1
dkj (dknò1)�dH(inò1)

ó M
Mòn �� exp [inò1cos(xnò1ñknò1)] dG0(knò1) dH(inò1)

ò 1
Mòn

;
n

jó1 � exp[inò1 cos (xnò1ñkj)] dH(inò1)
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Note that the second term in equation (7) can be obtained from a linear combina-
tion of VM(kj,i) densities after averaging over the prior distribution of i.

Hence, from equation (6), using the law of large numbers, an estimator of the
predictive density of [xnò1 Dxn] can be obtained by averaging equation (7) evaluated
at various values of (�n, �n) sampled from the posterior (2). Evaluation of equation
(7) is straightforward if we choose G0( · ) to be a von Mises or a cardioid distribution
and H( · ) to be discrete (say, discrete uniform). Even with other choices of G0( · ),
the evaluation is not too difficult, since equation (7) just requires a one-dimensional
numerical integration at most. The procedure of sampling (�n, �n) from equation
(2) is described in the next subsection.

From equation (7), the suggested choice of M is given by the relation

p*ó M
Mòn

or equivalently, Món� p*
1ñp*�

where p* is the proportion of belief we have in G0 being the true prior guess at G.
For example, if we are 50% sure that the prior is G0, we suggest a choice of Món.
M is sometimes interpreted as the ‘prior sample size’ (see Ferguson, 1973) although
this interpretation has been disputed by Sethuraman & Tiwari (1982). Other
methods of choice of M include putting a prior on M (see Escobar & West, 1995,
Leite et al., 1998) and using the maximum likelihood estimation (see Korwar &
Hollander, 1973).

2.3 Computations

Sampling from the posterior (2) is done using the Gibbs sampler, a Markov Chain
Monte Carlo (MCMC) procedure as outlined in Escobar & West (1995). This
requires all the univariate conditional pdfs of [ki D�(i)

n , �n, xn] and [ii D�(i)
n , �n, xn].

From equations (2) and (3), it is easily checked that

dp(ki D�(i)
n , �n, xn)ëM f(xi D ki,ii) dG0(ki)ò;

n

jó1
jÖ i

f(xi D ki,ii)dkj(dki)

(8)
óqi,0dGi,0(dki)ò;

n

jó1
jÖ i

qi, j dkj(dki)

Here,

dGi,0(ki)ë f(xi D ki,ii) dG0(ki)

is the posterior of ki obtained by updating the ‘baseline prior’ dG0 using the
likelihood of the ith observation f(xi D ki,ii) and the Bayes theorem, and is sometimes
referred to as the ‘baseline posterior’. qi, js are constants with the following property:

qi,0óCi M h(xi,ii),

qi, jóCi f(xikj,ii) ( jÖ i)� (9)

where

h(xi,ii)ó� f(xi D ki,ii)dG0(ki)

and the constant Ci is chosen such that qi,0ò&n
jó1( jÖ i)qi, jó1.
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The univariate conditional posteriors for ii are given by

dp(ii D�(i)
n , �n, xn)ë f(xi D ki,ii) dH(ii) (10)

The traditional Gibbs sampler works as follows: starting from an arbitrary
initial value, the components of (�n, �n) are sequentially updated according to the
univariate conditional distributions in equations (8) and (10). The process is
repeated until convergence to obtain the desired posterior distribution of
(�n, �n) Dxn.

We will, however, slightly modify the computations by exploiting the special
properties of the distributions involved. This, as we show later, will result in
speedier convergence.

2.3.1 Configuration Since the Dirichlet process prior D(M, G0) is discrete with
probability 1 (see Ferguson, 1973; Blackwell, 1973; Basu & Tiwari, 1982), with
positive probability, not all k1, . . . ,kn are distinct. Let there be n* distinct ks given
by k*1 , . . . ,k*n* with corresponding frequencies w1, . . . , wn* where w1ò. . .òwn*ón.
Following Escobar & West (1995), define the set of indices Só{S1, . . . , Sn} by
Skó j if kkók*j (1OkOn, 1O jOn*). S is called the configuration of �n. S
determines a classification of �n into n* distinct groups or clusters. Then equation
(7) becomes

f(xnò1 Dxn, S, �n, �n)

ë M
Mòn �� exp[inò1 cos(xnò1ñknò1)] dG0(knò1) dH(inò1) (11)

ò 1
Mòn

;
n*

jó1
wj � exp[inò1 cos (xnò1ñk*j )] dH(inò1)

Similarly, for any i(1O iOn), we will have a cluster structure S (i) for �(i)
n . Let

there be n(i)(Onñ1) distinct ks among the �(i)
n . We denote them by k(i)

1 , . . . ,k(i)
n(i)

with the corresponding frequencies being w(i)
1 , . . . , w (i)

n(i) where w(i)
1 ò . . .òw (i)

n(i)ó
nñ1. We can then rewrite equation (8) in terms of k(i)

j as follows:

dp(ki D�(i)
n , S (i), xn)óqi,0dGi,0(ki)ò;

n(i)

jó1
w(i)

j q (i)
j dk(i)j

(dki) (12)

where q (i)
j ë f(xi D k(i)

j ,ii) and qi,0ò&n(i)
jó1 w(i)

j q (i)
j ó1. Using equation (12) in place of

(8) reduces the amount of necessary computations, speeding up the algorithm.
Thus, generating an observation from univariate conditional (12) is equivalent

to generating an observation from a mixture distribution which picks an observation
from the ‘baseline posterior’ dGi,0( · ) with probability proportional to qi,0 or picks
one of the other distinct k(i)

j s with probability proportional to w(i)
j q (i)

j .
MacEachern (1994) suggests a remixing algorithm to prevent the possibility of

the above MCMC procedure getting stuck in a few clusters and, as a result, not
generating any new value of k(i)

j . This may happen when the value of qi,0 becomes
small compared with the sum &n(i)

jó1 w(i)
j q (i)

j .
Let Jjó{i : Sió j} be the set of indices of the observations in group j, jó1, . . . , n*.

Let x( j)ó{xi : Sió j} be the corresponding group of observations. Once the set S
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is known, the posterior analysis of k*j s becomes a collection of n* independent
analyses for jó1, . . . , n*. In particular,

dp(k*j Dx, S, n*, �n)•dp(k*j Dx( j) , S, n*, �( j))
(13)

ë<
i é Jj

f(xi D k*j ,ii)dG0(k*j ), jó1, . . . , n*

This is just the posterior of k*j given xi (i é Jj) sampled from f( · D k*j ).
We thus proceed with Gibbs sampling by iterating through the following two

steps in order—sampling at each stage is based on current values of the conditioning
variables and the process is repeated until convergence (i.e. when steady state is
reached):

(1) Sample from [ii D�(i)
n , �n, xn] for each ió1, . . . , n using methods in equation

(10).
(2) Sample from [ki D�(i)

n , �n, xn] for each ió1, . . . , n using methods outlined in
equation (12). After completing the cycle, this will result in a new configura-
tion S and a correponding value of n*.

(3) Given n* and S, generate a new set of parameters �* by sampling each new
k*j from the relevant component posterior in equation (13).

All the previous calculations are easily modified to accommodate the situations
where all the observations have the same concentration parameter (either random
or fixed).

2.3.2 Special case For the special case of von Mises priors, we now give the
expressions for qi,0 , qi, j, dGi,0 and dp in equation (12). We will use the notation
V (x,k,i) to denote the density at x of VM(k,i).

Assuming G0~VM(k0,i0), we have

qi,0ë
M
2n

I0(ĩi)
I0(ii)îI0(i0)

q (i)
j ëV (xi,k(i)

j ,ii)

dGi,0(ki)óV (ki, x̃i, ĩi),

dp(k*j Dxn, S, n*, �n)óV (k*j , x̃x̃j, ĩĩj)

where

ĩi cos x̃ióii cos xiòi0 cosk0

ĩi sin x̃ióii sin xiòi0 sink0

ĩĩj cos x̃x̃jó ;
i é Jj

ii cos xiòi0 cosk0

and ĩĩj sin x̃x̃jó;
i é Jj

ii sin xiòi0 sink0



Problems in circular data 153

Hence,

f(xnò1 Dxn, �n, �n, S )ó 1
Mòn � �M

2n
î I0(ĩ)

I0(i)îI0(i0)
(14)

ò;
n*

jó1
wjîV (xnò1,k*j ,i)�dH(i)

where

ĩ2ói2òi0
2ò2ii0 cos(xnò1ñk0)

Putting i0ó0 in the above gives a uniform baseline prior as a further subcase.

2.4 An example

We applied the above method to data on arrival times at an ICU in the UK,
presented in Cox & Lewis (1966). The full data shown in Fig. 1 consist of arrival
times (on a 24-hour clock) of 254 patients over a period of about 12 months from
February 1963 to March 1964. The original data were converted to a circular scale
by representing 0:00 hrs (12 o’clock midnight) as 0 radians and with usual
clockwise rotation being positive. The figure was constructed using CircStats
(see Lund, 2000).

The arrival times appear to have a peak at around 5:30 pm and hit a nadir in
the early morning hours of around 3:00–7:00 am, when people are the least active.
This suggests that perhaps a lot of the arrivals are due to traffic-related incidents,
which peak during the evening rush-hours.

We used the first 60 observations (in the order of occurrence) to illustrate the
proposed methods. Assuming a common von Mises distribution of the arrival
times, the maximum likelihood estimates (MLEs) of the mean direction and

F. 1. Circular dotplot of the 254 arrival times at the Intensive Care Unit. Data taken from Cox &
Lewis (1966).
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F. 2. Effect of change in belief in baseline prior on the predictive density; uniform baseline prior.

concentration parameter are k̂ó4.55 radians (equivalent to 5:23 pm) and
îó0.7299 respectively. Thus, a frequentist approach to this prediction problem
would result in a von Mises distribution with kó4.55 radians and ió0.7299.
Note, however, that the assumption of a common von Mises distribution is possibly
not valid, due to the pronounced multimodality of the data.

We used three methods to get a predictive density : (i) assuming the is are all
equal and known, (ii) assuming is are all equal and random and, (iii) assuming is
are unequal and random. In all the cases, we assumed a von Mises baseline prior
for the ks with k0ók̂ and i0óî. For (i), we chose ióî. For (ii) and (iii), we
assumed that the common distribution of i is discrete uniform with support on k
equidistant points (including 0) such that the prior mean equals î. Similar analyses
were run with a uniform baseline prior for k, achieved by taking i0ó0.

The following features of the predictive density were evident:

Ω Increasing the value of M led to a flatter density (see Figs 2 and 3). This is
explained by the fact that higher M implies more faith in baseline prior,
resulting in more ks drawn from the baseline posterior. This gives a ‘wider
variety’ of ks to average upon, as opposed to only point masses when M is
close to 0.

Ω A switch from equal to unequal is introduced more uncertainty in the model,
which is reflected in a flatter density (see Fig. 4). However, if the is were
known and equal, the predictive density is between the above graphs in Fig.
4. This is because, although there is less randomness (because the is are
known and equal), there is less dependence among the original data.

Ω There is negligible effect of changing the number of points in the discrete
uniform prior for i (see Fig. 5).

Ω The effect of deleting a few observations was also found to be negligible,
provided that the effect of the sample was small compared with the prior (i.e.
M/(Mòn) is large). Hence, the proposed analysis is robust to extreme data.
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F. 3. Effect of change in belief in baseline prior on the predictive density; von Mises baseline prior.

F. 4. Effect of unequal is.

All the above calculations were done using C routines. The uniform random
number generators and sorting routines were based on Press et al.(1997). Genera-
tion of von Mises variables was performed using the algorithm due to Best & Fisher
(1979). From empirical studies using different starting values, we found the Gibbs
sampler quickly reached steady state. We chose the first 10,000 simulations as our
burn-in and the results of further 10 000 simulations were used for the predictive
density calculations.
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F. 5. Effect of change in number of points (k) in the discrete uniform prior of i.

3 Two-sample test

3.1 Introduction and notations

Suppose we have (circular) data from two sources, and we want to test whether
their mean directions are the same. For example, we have data from two hospitals
on their emergency room arrivals and would like to see whether the average arrival
time is the same in both cases. For simplicity, we assume that the two data sets are
coming from von Mises populations with the same concentration parameter within
a group. The problem then is one of testing whether the mean directions of the
von Mises populations are the same. The traditional frequentist approach uses the
Neyman–Pearson type of argument to come up with large sample tests (such as
the two-sample t-test) that control the Type I error while minimizing the Type II
error. We will be using a semiparametric Bayesian approach in this article.
Formally, let

xnó(x1, . . . , xn)

and

ymó(y1, . . . , ym)

be observed data on directions from two populations. We assume that

xi D (k1,i1) i.i.d.~ VM(k1,i1), (ió1, . . . , n)

and

yj D (k2,i2) i.i.d.~ VM(k2,i2), ( jó1, . . . , m)
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Let us write �ó(k1,k2,i1,i2),

#ó{�:0Ok1\2n, 0Ok2\2n,i1[0,i2[0}

#0ó{� é#: k1ók2}

and #1ó{� é#: k1Ök2}

Then #0X#1ó# and that #0W#1ó�. We want to test H0: �é#0 against the
alternative H1: � é#1.

Let pióP(Hi) be the prior probability that Hi is true (ió0, 1). In addition, let
� DHi~gi( · ) be the distribution of � when Hi is true (ió0, 1). The likelihood of � is

L(� Dxn, ym)ó�<
n

ió1
f(xi D k1,i1)��<

m

jó1
f(yj D k2,i2)�

By Bayes theorem,

P(Hi Dxn, ym)ó
�#P(xn, ym DHi, �)P(� DHi)P(Hi) d�

;
1

kó0�# P(xn, ym DHk, �)P(� DHk)P(Hk) d�

ó
�#i

P(xn, ym DHi, �)gi(�)pi d�

;
1

kó0 �#k

P(xn, ym DHk, �)P(� DHk)P(Hk) d�

ó

pi�#i

L(� Dxn, ym)gi(�) d�

;
1

kó0
pk�#k

L(� Dxn, ym)gk(�) d�

for ió0, 1 are the posterior probabilities of the two hypotheses. We will select that
hypothesis to be true whose posterior probability is the highest (reflected in the
Bayes factor). Unfortunately, exact calculations in the above are difficult to perform.
Hence, we resort to simulated values of the posterior probabilities. Once we
simulate a large number (say N) of observations � from [� Dxn, ym], our estimate of
the posterior probability of a hypothesis Hr is

P(Hr Dxn, ym)ó 1
N

(number of times Hr occurs among the N sampled �s)

3.2 Theory and computations

We assume that k1,k2 jG and that G~D(M, G0). Further, assume as before that
i1,i2

i.i.d.~H and that the ks and is are independent. Using interpretations as in the
previous section, G0 is the baseline prior and M quantifies our belief that G0 is
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actually the value of G. In fact, it is easily shown that p0ó1/(Mò1) and p1óM/
(Mò1) are the prior probabilities of the two hypotheses, thus relating the choice
of M to our prior beliefs in the two hypotheses (see Gopalan & Berry, 1998). Using
the results given earlier, we have

dG(k1 D k2)ë M
Mò2ñ1

dG0(k1)ò 1
Mò2ñ1

dk2(dk1)

dG(k2k1)ë M
Mò2ñ1

dG0(k2)ò 1
Mò2ñ1

dk1 (dk2)

Let �2ó(i1,i2) and �2ó(k1,k2). Then,

dG(k1 D k2, �2, xn, ym)~q1,0dG1,0(k1)òq1,2 dk2(dk1)

dG(k2 D k1, �2, xn, ym)~q2,0dG2,0(k2)òq2,1dk1(dk2)

where

q1,0óc1Mh(xn,i1), q1,2óc1 f(xn D k2,i1)

q2,0óc2Mh(ym,i2), q2,1óc2 f(ym D k1,i2)

The constants c1 and c2 are chosen such that

q1,0òq1,2ó1óq2,0 òq2,1

h1(xn,i1)ó� f(xn D k1,i1)dG0(k1)

h2(ym,i2)ó� f(ym D k2,i2)dG0(k2)

and dG1,0( · ), dG2,0( · ) are the posterior pdfs of k1 and k2 respectively with respect
to the baseline prior dG0( · ):

dG1,0(k1)ë f(xn D k1,i1)dG0(k1)

dG2,0(k2)ë f(ym D k2,i2) dG0(k2)

The updating equations for is are given by

dp(i1 D i2, �2, xn, ym)ë<
n

ió1
f(xi D k1,i1) dH(i1),

dp(i2 D i1, �2, xn, ym)ë<
m

jó1
f(yj D k2,i2) dH(i2)

All the above are implemented in a Gibbs sampler as before, along with the
remixing algorithm. The updating equations are easily modified to accommodate
a common i that can be random or fixed.
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3.2.1 Special case Assuming G0~VM(k0,i0), we have

h1(xn,i1)ó I0(ĩ1)
I0(i0)[2nI0(i1)]n

h2(ym,i2)ó I0(ĩ2)
I0(i0)[2nI0(i2)]m

dG1,0(k1)óV (k1, x̃, ĩ1)

dG2,0(k2)óV (k2, ỹ, ĩ2)

where

ĩ1 cos x̃ói1;
n

ió1
cos xiòi0 cosk0

ĩ1 sin x̃ó i1;
n

ió1
sin xiòi0 sink0

ĩ2 cos ỹó i2;
m

ió1
cos yiòi0 cosk0

ĩ2 sin ỹó i2;
m

ió1
sin yiòi0 sink0

Putting i0ó0 gives the uniform baseline prior.

3.3 Simulation results

We applied the above method on data of cross-bed azimuths of palaeocurrents
taken from Fisher & Powell (1989). The data consist of palaeocurrents measured
at two sites in the Belford Anticline at New South Wales, Australia. Palaeocurrent
analysis is used to determine the direction of flows of ancient rivers. The goal here
is to detect if the two sites have a common mean direction.

As before, we analysed the data under 3 main assumptions: (i) is are known and
equal, (ii) is are random and equal, and (iii) is are random and unequal. In all
the cases, we ran separate analyses using von Mises and uniform baselines for k.

The von Mises populations were assumed to have a common concentration of
1.0 (MLE based on the observed data) for (i); for (ii) and (iii) a discrete uniform
prior was used for i.

Calculations were performed both for uniform and von Mises baseline priors. In
the latter case, the mean direction of the baseline was chosen to be the (sample)
mean direction of the combined data. 10 000 iterations were used to let the Gibbs
sampler stabilize and a further 10 000 iterations were used to calculate the Bayes
factor. Table 1 gives the Bayes factors for testing the equality of the two mean
directions.

As expected, we found that introduction of the randomness in the is resulted in
smaller Bayes factors for the von Mises baseline but larger ones for a uniform
baseline. The calculations show that even a moderate baseline prior (uniform or
von Mises) probability of H0 is amplified by the data to show more evidence in
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T 1. Bayes factors under uniform and von Mises priors.

i known i random i1, i2 random

M Uniform von Mises Uniform von Mises Uniform von Mises

99.00 8.5386 14.6364 9.7673 3.6971 0.8890 4.9916
49.00 7.6998 12.3266 8.5793 3.5977 0.9847 4.7399
32.33 7.8124 12.1907 8.4247 3.7530 1.0103 4.6825
24.00 7.7460 10.9905 8.2711 3.5514 1.0600 4.4158
19.00 7.1636 10.1322 7.6704 3.5760 1.0570 4.2843
15.67 7.0947 10.0712 7.4986 3.4857 1.0160 4.1620
13.28 6.4994 9.5498 7.2931 3.4406 0.9663 4.1679
11.50 6.8063 9.3598 7.2816 3.4370 1.0491 3.9570
10.11 6.5026 9.1042 7.1316 3.4046 1.0049 3.9477
9.00 6.3610 8.4182 6.8200 3.3001 1.0458 3.9478
5.67 6.1266 7.7742 6.3926 3.0580 0.9703 3.5116
4.00 5.6479 7.3282 5.9010 2.8306 0.9505 3.2267
3.00 5.3940 6.8977 5.7032 2.7088 1.0069 2.9654
2.33 5.2326 6.4883 5.4705 2.5987 1.0303 2.7668
1.86 5.0161 6.3385 4.9506 2.4759 0.9817 2.7160
1.50 4.8586 6.5645 4.8131 2.3760 1.0265 2.6040
1.22 4.8404 6.3929 4.7720 2.2919 1.0122 2.4437
1.00 5.1387 5.9348 4.8548 2.2300 1.0052 2.3212
0.82 4.7363 5.9548 4.8089 2.1144 0.9714 2.3226
0.67 4.7271 5.9870 4.4146 2.1134 0.9921 2.2458
0.54 4.5800 6.2007 4.7718 2.0171 1.0401 2.1325
0.43 4.4582 5.7114 4.1162 2.0274 0.9863 2.0274
0.33 4.6123 5.9089 4.0354 1.9420 0.9744 2.0682
0.25 4.6713 6.0000 4.3968 1.8561 1.0301 1.9201
0.18 4.1068 5.5346 3.9467 1.8851 0.9694 1.9652
0.11 4.2633 5.7678 4.4614 1.8146 0.9614 1.8801
0.05 4.6466 5.0081 4.3702 1.7018 1.0817 1.8271
0.01 5.0404 7.2049 4.7999 2.1858 0.9519 1.7620

support of H0 than of H1 (Bayes factor [1). Note that in the case of uniform
baseline when the two concentrations are random, data do not provide evidence
for one hypothesis over the other. We thus conclude that the palaeocurrents at the
two sites have the same average direction.

4 Conclusion

We have looked at prediction and testing problems for directional data using
Bayesian semiparametric techniques. The methods, although computationally
intensive, are easy to implement. The standard frequentist and parametric Bayesian
approaches are shown to be special cases of these methods.

The prediction procedure can be easily modified to incorporate uncertainty in
the precision parameter (M), by incorporating a prior distribution for M. Possible
uncertainty in H can be modelled by another Dirichlet process prior:
H~D(MH, H0). The assumption of independence of ks and is can also be relaxed.

Instead of assuming a common distribution for all the ks, we might employ a
mixture distribution: kj~eGò(1ñe)Gj, where G1, . . . , Gn~D(M, G ). e can be
assumed to have a Beta distribution, adding to another level in the hierarchy.

The testing procedure is easily generalized to several hypotheses. It is, however,
apparent from Table 1 that the Bayes Factor computations are unstable when using
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the ‘hit-and-miss’ method, especially in the case of extreme M values. An alternative
approach due to Chib (1995) is worth investigating.

Finally, it would be of interest to see how the above methods can be modified to
include additional information through covariates (say, a predictive density of ICU
arrivals during the summer as opposed to winter, males versus females, etc).
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